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Abstract. We present a full treatment of the microcanonical ensemble of the ideal hadron-resonance
gas starting from a quantum-mechanical formulation which is appropriate for the statistical model of
hadronization. By using a suitable transition operator for hadronization we are able to recover the results
of the statistical theory, particularly the expressions of the rates of different channels. Explicit formulae are
obtained for the phase space volume or density of states of the ideal relativistic gas in quantum statistics
as a cluster decomposition, generalizing previous ones in the literature. The problem of the computation
of averages in the hadron gas microcanonical ensemble and the comparison with canonical ones will be
the main subject of a forthcoming second paper.

1 Introduction

The revived interest in the statistical model of hadron pro-
duction is mainly owing to its application to heavy ion colli-
sions, where an equilibrated source of hadrons is expected.
This model has given strikingly good results in elementary
collisions as well [1], and this finding has triggered some
debate about their interpretation [2]. A proposed model is
that hadronization occurs at some critical energy density [3]
(or maybe another related parameter) of a number of mas-
sive pre-hadronic colourless extended objects (henceforth
referred to as clusters) which are formed as a result of the
underlying non-perturbative strong-interaction dynamics
and which thereafter decay coherently into multihadronic
states [4]. In this scheme, the single cluster’s decay rate into
any channel would be determined only by its phase space
with no special dynamical weight (phase space dominance).
Thereby, the observed statistical equilibrium would not be
the effect of a collisional thermalization process between
formed hadrons over long-lived extended regions in the fi-
nal state, rather of equal quantum transition probabilities
from a cluster to all accessible final states. By accessible it
is meant that one must comprise only those states that ful-
fill conservation laws, i.e. have the same quantum numbers
as the initial cluster’s ones. The set of states with fixed
energy-momentum, angular momenta, parity and internal
charges is defined as microcanonical ensemble, though the
same name is usually employed to denote the set of states
with fixed energy-momentum and internal charges, relax-
ing angular momentum and parity conservation. We will
not make any distinction either; whether the constraints
of angular momenta and parity are meant to be included
will be clear from the context.

Although the microcanonical ensemble is the correct
statistical ensemble to use in hadronizing a single cluster, so
far all actual data analyses within the statistical model have

been carried out in the framework of the canonical or grand-
canonical ensemble of the hadron gas, i.e. with hadronizing
sources described in terms of a temperature and taking
into account the conservation of energy-momentum and
angular momentum only on average. The microcanonical
ensemble has been used very seldom [5,6], mainly owing to
the hard and long computations involved. Indeed, in high
energy collisions, where many clusters are produced, the
use of the canonical ensemble is favored by fluctuations of
masses and volumes, which tend to reduce the importance
of exact conservation of energy and momentum. It is even
possible that fluctuations make the system of many clus-
ters equivalent (as far as Lorentz invariant quantities, such
as average multiplicities, are concerned) to a large global
cluster obtained by ideally clumping them [7]. While the
canonical ensemble is in fact an increasingly better ap-
proximation of the microcanonical one for large values of
cluster’s mass and volume, we have no quantitative es-
timate of how large they ought to be1, so the use of the
canonical ensemble is, until now, justified by the agreement
with the data. On the other hand, it would be desirable
to have a more precise and quantitative assessment of the
accuracy of the canonical approximation. An explicit cal-
culation of the microcanonical ensemble of the hadron gas
is also necessary if we want to test the statistical model
at lower energies (say

√
s < 10 GeV), where conservation

laws are expected to play a major role and the canonical
approximation is not a good one. Furthermore, it would
be very useful having at our disposal a Monte-Carlo algo-
rithm for microcanonical hadronization of single clusters in
high energy collisions to be used for numerical calculations
of quantities for which an analytical expression cannot be
obtained. Thus, providing a reliable and fast numerical

1 Recently, a calculation has been done for pp collisions with
a restricted set of hadrons [6]
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algorithm for the calculation of the microcanonical ensem-
ble of the hadron gas and comparing the results with the
canonical approximations are the main goals of this work,
which will be described in two papers.

In this first paper, we will confine ourselves to the ana-
lytical development of the microcanonical formalism, while
the numerical calculations will be the main subject of the
second paper. In fact, another major motivation of this
work is to provide a consistent formulation of the statisti-
cal hadronization model starting from quantum transition
probabilities, which is still lacking despite the apparent
simplicity of the picture and the fact that its foundations
were laid more than 50 years ago [8]. The attempts to derive
the statistical theory results from S-matrix under suitable
hypotheses, were mainly carried out by Hagedorn [9] and
Cerulus [10] on the basis of time-reversal arguments. How-
ever, the reasoning is quite involved in this approach, and
one needs a separate treatment of the dynamical matrix
element averaging for multiplicities and spectra. The in-
clusion of quantum statistical effects in the microcanonical
ensemble of the relativistic hadron gas has been done [11]
consistently only for large volumes and not sufficiently gen-
eral. In fact, in this traditional treatment, particle states
confined in the cluster’s volume are assumed to be eigen-
states of energy-momentum,which is true only if the volume
is so large that the entailed energy-momentum uncertainty
can be neglected, which is not generally the case when deal-
ing with small volumes (this will be discussed more in detail
at the end of Sect. 2). Furthermore, in that approach, the
whole treatment did not start from the statistical theory
of multiple production, and it is thus not easy to gener-
alize if angular momentum and parity conservation are to
be included.

Therefore, we believe that a coherent general reformu-
lation of the statistical model of hadronization is needed.
In this paper, we will go along the whole formalism start-
ing from the basic assumptions and will recover some well
known formulae in the literature, like those in [11], as ap-
proximations of more general ones in case of sufficiently
large volumes. In particular, we will recover the N -body
relativistic phase space expression (without angular mo-
mentum and parity conservation) without treating con-
fined particle states as energy-momentum eigenstates, an
assumption which is correct only asymptotically. We will
show how conservation laws are to be implemented in the
most general case, thus providing a usable framework to
obtain a more general expression of N -body phase space
when angular momentum and other conserved quantities
are to be taken into account. Furthermore, we will explic-
itly show how the microcanonical ensemble reduces to the
canonical one for large cluster’s volume and mass. The for-
mulae presented in this work will be then the basis of the
numerical computations in the second paper [12].

This paper is organized as follows: in Sect. 2 we will in-
troduce a basic formulation of the statistical hadronization
model and follow the path leading to the microcanonical en-
semble; in Sect. 3 we will develop in detail the microcanon-
ical formalism for an ideal hadron-resonance gas with full
quantum statistics; in Sect. 4 the microcanonical partition

function will be calculated and the approximations needed
to obtain closed expressions stressed, while in Sect. 5 the
transition from the microcanonical to the canonical en-
semble is described; finally, in Sect. 6 the calculation of the
physical observables will be discussed.

2 Statistical hadronization of a cluster

The fundamental assumption of the statistical hadroniza-
tion model is that the final stage of a high energy collision
results in the formation of a set of extended colourless mas-
sive objects, the clusters or fireballs, producing hadrons in
a purely statistical manner: that is, all multihadronic states
within the cluster volume and compatible with the cluster’s
quantum numbers are equally likely. Clusters can indeed be
thought of as very short-lived extended resonances, much
like bags of the bag model [13]. They differ from the clusters
proposed in other hadronization models [14] as they are
endowed with a spatial extension. In this picture, the clus-
ter’s decay rate into a given N -particle channel should be
proportional to the number of multiparticle states within
the volume V of the cluster, which can be expressed, in
the limit of Boltzmann statistics and neglecting angular
momentum and parity conservation, as

Γ ∝ V N

∫
d3p1 . . .d3pN δ4

(
P −

N∑
i=1

pi

)
, (1)

where P is the four-momentum of the cluster. The dis-
tinctive feature of the statistical model is essentially the
appearance of a finite volume in the decay rate,whichmakes
the above expression different from that of the decay rate
of a massive particle usually found in textbooks, where
asymptotic states are defined over an infinitely large vol-
ume:

Γ ∝
∫

d3p1

2ε1
. . .

d3pN

2εN
|Mif |2δ4

(
P −

N∑
i=1

pi

)
. (2)

While these two equations have in principle a different
physical meaning, there have been several attempts to de-
rive an equation like (1) from (2) (see e.g. [9]). Instead of
establishing a link between them through a suitable choice
of the squared matrix element |Mif |2, we will try to ob-
tain the formula (1) starting from a suitable ansatz which
will enable us also to recover quantum statistics effects
(Bose–Einstein or Fermi–Dirac correlations) in a natural
way. This can be accomplished because a finite volume is
involved in (1) unlike in (2).

We assume that, as a result of non-perturbative QCD-
driven evolution, the cluster state develops uniform pro-
jections over the multihadronic Fock space states defined
by its volume and compatible with its quantum numbers.
Thus, if |i〉 is a properly normalized asymptotic state char-
acterized by the mass, spin and quantum numbers of the
cluster and where 〈f | is an asymptotic multihadronic final
state, the rate Γf into the final state f is written as

Γf = |〈f |W |i〉|2, (3)
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where W is an effective transition operator proportional
to the projector over the Hilbert subspace defined by all
stationary multihadronic states |hV 〉 within the cluster,
namely

W =
∑
hV

|hV 〉〈hV |η̂ ≡ PV η̂, (4)

where η̂ is an operator depending on the strong-interaction
symmetry group invariants (Casimir operators) such as
mass, spin, isospin, charge etc. The state |hV 〉 will be as-
sumed to be a confined stationary free particle state within
the cluster, with fixed or periodic boundary conditions;
the inclusion of all resonances as independent states allows
one to take into account a part of the interaction between
strongly stable hadrons and this is the reason of the usual
expression ideal hadron-resonance gas [15].

The operator W is a peculiar one because it is depen-
dent on the shape and volume of the cluster, which in fact
pertains to the initial conditions. If the cluster’s quantum
numbers coincide with those of the initial colliding system,
(only one cluster is produced) W should commute with
all conserved quantities in the strong interaction to ensure
the due selection rules, though this may not be necessary
if many clusters are produced.

The commutation requirement is fulfilled for all internal
symmetries, charge conjugation and for angularmomentum
and parity provided that the cluster has a spherical shape
(see Appendix A). On the other hand,W does not commute
with energy and momentum, as translational symmetry is
broken by the assumption of a finite volume; hence, a viola-
tion of energy-momentum conservation of the order of the
inverse of the cluster’s linear size is implied. However, as it
will become clear in the following, momentum-integrated
rates in fact get a contribution only from states fulfilling
energy-momentum conservation; otherwise stated, a finite
volume introduces a smearing effect on energy and momen-
tum which is washed out after kinematical integrations. It
should also be pointed out that viewing a short-lived ob-
ject such as a cluster as an asymptotic state with definite
total energy and momentum is certainly an approximation
and a slight violation of energy-momentum conservation is
not to be taken as a serious awkwardness. Problems may
arise only in handling single cluster collision events, where
final states must have the energy and momentum of the
colliding system.

Equation (3) can be written as

Γf = 〈f |W |i〉〈i|W †|f〉 = 〈f |WPiW
†|f〉

= |ηi|2〈f |PV PiP
†
V |f〉, (5)

where Pi is the projector over the initial quantum state and
ηi is such that η̂|i〉 = ηi|i〉. In principle, the projection is to
be carried out onto a state with definite energy, momentum,
spin (the Pauli–Lubanski vector), parity, C-parity (if the
cluster is neutral) and internal charges. Hence the most
general projector to be considered reads

Pi = PP,J,λ,πPχPI,I3PQ, (6)

where P is the four-momentum of the cluster, J the spin,
λ the helicity, π the parity, χ the C-parity, I and I3 the

isospin and its third component and Q = (Q1, . . . , QM )
a set of M abelian (i.e. additive) charges such as baryon
number, strangeness, electric charge etc. Of course, the
projection Pχ makes sense only if I3 = 0 and Q = 0; in
this case, Pχ commutes with all other projectors.

A state with definite four-momentum, spin, helicity
and parity transforms according to an irreducible unitary
representation ν of the extendend Poincaré group IO(1,3)↑,
and the projector PP,J,λ,π can be written by using the
invariant, suitably normalized, measure µ as

PP,J,λ,π =
1
2

∑
z=I,Π

dim ν

∫
dµ(gz) Dν†(gz)i

i U(gz), (7)

where z is the identity or space inversion Π, gz ∈ IO(1, 3)↑
±,

Dν(gz) is the matrix of the irreducible representation ν the
initial state i belongs to, and U(gz) is the unitary represen-
tation of gz in theHilbert space. Similar integral expressions
can be written for the projectors onto internal charges, for
the groups SU(2) (isospin) and U(1) (for additive charges).
Although projection operators cannot be rigorously defined
for non-compact groups, such as the Poincaré group, we
will maintain this naming, relaxing mathematical rigor. In
fact, for non-compact groups, the projection operators can-
not be properly normalized so as to have P2 = P and this
is indeed related to the fact that |i〉 has infinite norm. Still,
we will not be concerned with such drawbacks thereafter,
whilst it will be favorable to keep the projector formalism.
Working in the rest frame of the cluster, with P = (M,0),
the matrix element Dν†(gz)i

i vanishes, unless the Lorentz
transformations are pure rotations, and this implies the
reduction of the integration in (7) from IO(1,3)↑ to the
subgroup T(4)⊗SU(2)⊗Z2 (see Appendix B). Altogether,
the projector PP,J,λ,π reduces to

PP,J,λ,π =
1

(2π)4

∫
d4x eiP ·xU(T(x))

× (2J + 1)
∫

dR DJ(R)λ∗
λ U(R)

I + πU(Π)
2

, (8)

dR being the invariant SU(2) measure normalized to 1.
The invariant measure d4x of the translation subgroup
has been normalized with a coefficient 1/(2π)4 in order to
lead to a Dirac delta, as shown below. This is indeed the
general expression of the projector defining the proper mi-
crocanonical ensemble, where all conservation laws related
to space-time symmetries are fulfilled.

Hereafter, we will confine ourselves to clusters with
fixed energy, momentum and abelian charges while conser-
vation of angular momentum, isospin, parity and C-parity
will be disregarded. This is expected to be a very good ap-
proximation in high energy collisions, where many clusters
are formed and these latter constraints should not play a
significant role [10, 15]. On the other hand, they cannot
be disregarded in very small hadronizing systems (e.g. pp̄
at rest [16]) and, in such circumstances, the full projec-
tion operation in (8) should be carried out. As has been
mentioned in the Introduction, the set of states with fixed
values of energy, momentum and abelian charges is defined
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as a microcanonical ensemble as well, and we will stick to
this convention.

Dealing with clusters with an unspecified value of angu-
lar momentum isospin and parity means, from a statistical
mechanics point of view, that all possible projections over
definite values of those quantum numbers occur with their
statistical weight. In other words, we shall sum over all
J, λ, I, I3, π, χ, which amounts to simply removing the rel-
evant projection operators in virtue of the completeness
relations such as, for instance,

∑
Jλ

(2J + 1)
∫

dR DJ(R)λ∗
λ U(R) = I. (9)

In this case, the projector operator onto the initial state
reduces to the more familiar form

Pi → PP PQ

=
1

(2π)4

∫
d4x eiP ·xe−iPop·x

× 1
(2π)M

∫ +π

−π

dMφ eiQ·φe−iQop·φ

= δ4(P − Pop) δQ,Qop , (10)

where π = (π, . . . , π) and the group generators Pop and
Qop have been introduced. The appearance of Dirac and
Kronecker deltas in (10) reflects the abelian nature of the
leftover space-time translations and U(1) groups. By using
the latter expression of the projector Pi, (4), and inserting
two identity resolutions, (5) turns into

Γf = |ηi|2
∑

hV h′
V

∑
f ′f ′′

〈f |hV 〉〈hV |f ′〉〈f ′′|h′
V 〉〈h′

V |f〉

×〈f ′|δ4(P − Pop) δQ,Qop |f ′′〉, (11)

and, taking f ′, f ′′ states as energy-momentum and
charges eigenstates:

Γf =
∑

hV h′
V

∑
f ′

〈f |hV 〉〈hV |f ′〉〈f ′|h′
V 〉〈h′

V |f〉

×δ4(P − Pf ′) δQ,Qf′ ; (12)

that is,

Γf = |ηi|2
∑
f ′

∣∣∣∑
hV

〈f |hV 〉〈hV |f ′〉
∣∣∣2δ4(P − Pf ′) δQ,Qf′ .

(13)
Multiparticle states in the Fock space are characterized by a
set of integer occupation numbers for all the species and for
all the kinematical states. This also applies to the general
state |hV 〉 as long as it represents, as it has been assumed,
free hadron and resonance states within the cluster, so one
can write |hV 〉 = |{Ñj}kV 〉, where {Ñj} = (Ñ1, . . . , ÑK) is
aK-tuple of integer numbers, one for each hadron species j,
and kV denotes a set of kinematical variables, depending on
the spatial region with volume V , describing the state of the

Ñ = Ñ1+Ñ2+. . .+ÑK particles. Similarly, we can rewrite
the states belonging to the complete basis as |f〉 = |{Nj}k〉,
where now k is meant to be a set of proper momenta
and polarizations. Note that the expression (13) allows
transitions to occur to states |f〉 with energy-momentum
different from P , unless the volume is infinitely large. This
tells us, as has been mentioned, that the energy-momentum
spread is of the order of the inverse of the cluster’s linear size.

To further develop (13) we shall assume that

〈{Ñj}kV |{Nj}k〉 = 0 if Ñj 	= Nj ∀ j. (14)

Hence, it is required that states with different particle
compositions, either within the bounded region or in the
whole space, are orthogonal. Indeed, there are two contra-
indications to this assumption. The first is of a more fun-
damental character: in relativistic quantum field theory a
condition like (14) cannot be exactly true, as stationary
states localized in a finite region are not eigenstates of the
properly defined particle number operator (localization in-
volves the creation of particle–antiparticle pairs). However,
this effect is relevant if the size of the region is lower than
the Compton wavelength of the particle 1/m, which is at
most (for pions) ≈ 1.4 fm, corresponding to a volume of
≈ 3 fm3; for all other hadrons, this volume is significantly
smaller. Henceforth, we will assume that the volumes to be
dealt with are larger (not too much though) and will take a
non-relativistic quantum-mechanical treatment as a good
approximation. The second one is concerned with strongly
decaying resonances, which, in principle, should not be or-
thogonal to the states of their decay products; however,
we have assumed that resonances are to be treated as in-
dependent states, so the orthogonality relation is correct
in the framework of the ideal hadron-resonance gas.

With these two caveats in mind, we proceed to calculate
the total rate of some channel, i.e. a multihadronic config-
uration {Nj}, by summing over the physical observables k,
being |f〉 = |{Nj}k〉. Applying the sum to the right hand
side of (12), taking into account the condition (14) and the
completeness of the set |{Nj}k〉, one obtains∑

k

〈f |hV 〉〈h′
V |f〉

=
∏
j

δNjÑj
δNjÑ ′

j

∑
k

〈{Nj}k|{Nj}kV 〉〈{Nj}k′
V |{Nj}k〉

= 〈hV |h′
V 〉
∏
j

δNjÑj
= δhV h′

V

∏
j

δNjÑj
, (15)

and, therefore

Γ{Nj} ≡
∑

k

Γ{Nj},k (16)

= |ηi|2
∑
k′

∑
kV

|〈{Nj}k′|{Nj}kV 〉|2δ4(P − Pf ′) δQ,Qf′ .

The above equation (and, maybe more apparently, (19)
below) shows that only kinematical states fulfilling energy-
momentum conservation contribute to the total rate of a
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channel, even though the transition to final states with
Pf 	= P is allowed, as discussed.

We are now in a position to recover an expression like (1)
mentioned at the beginning of this section. More specif-
ically, we can prove that the right hand side in (16) is
|ηi|2 times the usual expression of the probability of the
multihadronic configuration {Nj} to occur in the micro-
canonical ensemble of an ideal hadron-resonance gas with
four-momentum P , charges Q and volume V , as long as
the aforementioned relativistic quantum field effects are
disregarded. We will show this first in the simple case of a
channel with all different particles, i.e. Nj ≤ 1 ∀j; the case
of identical particles will be handled in the next section.
The scalar product in (16) factorizes, so that

∑
kV

|〈{Nj}k′|{Nj}kV 〉|2 =
N∏

i=1

∑
ki,τi

|〈p′
iσ

′
i|kiτi〉|2, (17)

where i = 1, . . . , N is the single-particle index. The variable
p is a momentum whilst k denotes three variables defining
the state of the particle within the region with volume V
(e.g. a plane wave vector for a rectangular box or energy
and angular momenta for a sphere). The variables σ′

i and
τi label different polarization states of the particle and may
refer to different projections of the spin (or the helicity);
we will assume that the transformation from τ to σ is
unitary. As long as |k, τ〉 is a complete set of one-particle
states in the region with volume V , as a consequence of
the completeness of the states |hV 〉, it can be shown that,
in the non-relativistic quantum mechanics approximation
(see Appendix C),

∑
k,τ

|〈pσ|kτ〉|2 =
V

(2π)3
. (18)

Thus, taking into account that
∑

k′ =
[∏N

i=1
∑

σi

∫
d3pi

]
2

and (17) and (16) become

Γ{Nj}

= |ηi|2 V N

(2π)3N

[
N∏

i=1

(2Ji + 1)
∫

d3pi

]
δ4

(
P −

∑
i

pi

)

= |ηi|2Ω{Nj}, (19)

where charge conservation,
∑

j Njqj = Q, is understood.
Therefore, the rate Γ{Nj} is proportional to the usual ex-
pression of the phase space volume or density of states per
four-momentum cell Ω{Nj} of the multihadronic configu-
ration {Nj} in the microcanonical ensemble of the ideal
hadron-resonance gas. It is to be emphasized that this for-
mula, which has been used by many authors in the frame-
work of the statisticalmodel, is not themost general though,
as all particles must be different. Therefore, it corresponds

2 The notation
[∏

i

∫
d3pi

]
stands for the integral operator∫

d3p1 . . .
∫

d3pN and it is understood to act on its right hand
side argument

to assuming classical Boltzmann statistics. We will see in
the next section that, if quantum statistics is taken into
account, the integral in (19) is indeed a single term of
an expansion.

Even though our derivation might look unnecessarily
elaborated, the N -body relativistic phase space volume
in Boltzmann statistics (19) has been recovered starting
from purposely built quantum-mechanical transition prob-
abilities without invoking any time-reversal argument or
averaging procedures like in previous treatments [9, 10].
Furthermore, it should be emphasized that this derivation
is more general than previous treatments because we did
not consider particle states within the cluster as energy-
momentum eigenstates. In fact, (19) is obtained in a tra-
ditional approach [11] by working out the expression

Ω{Nj} =
∑

states

δ4(P − Pstate)δ{Nj},{Nj}state , (20)

with the key assumption that particles within the cluster
have indeed definite four-momenta and so does the whole
multiparticle state:

Pstate =
∑

i

pi, (21)

and finally replacing the sum over particle states in the
cluster with an integration:

∑
k

→ V

(2π)3

∫
d3p. (22)

Altogether, this approach can be a good approximation
only for very large volumes, because only for large vol-
umes can the uncertainty on energy-momentum entailed
by localization within the cluster be negligible. For smaller
volumes, the localized multiparticle states, that we have
denoted as |hV 〉, are not eigenstates of energy-momentum
and their spread in energy-momentum cannot be neglected.
It is worth making a rough estimate of how large the vol-
ume ought to be for the traditional approach to be valid.
This can done in two ways: requiring that the uncertainty
in momentum for a single-particle localized state is not
larger than of the order of, say, 10%, or arguing that the
approximation (22) is indeed a good one provided that
the number of phase space cells is at least of the order
of 10–100. Working out (22) or using the indeterminacy
principle, it turns out in both cases that the cluster’s lin-
ear size should be larger than ≈ (6–10)/p, where p is the
typical momentum of the particles at hadronization. Since
this is of the order of some hundreds MeV, the linear size
must be of the order of, say, 3–10 fm, which is consistently
larger than the limit set by the aforementioned condition
on the Compton wavelength of the particles, of the order
of a fraction of a fermi. Therefore, the requirement on the
volume for the validity of the traditional treatment is more
stringent than that needed for the present one.

Although in the case of Boltzmann statistics, the tra-
ditional and the present approach lead to the same expres-
sion (19) for the N -body relativistic phase space volume,
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different expressions are found in the case of quantumstatis-
tics, that is, with identical particles, as will be shown in
the next section.

3 Identical particles and cluster decomposition

If there are identical particles in the channel, (16) holds,
but (17) does not and has to be modified. For the sake of
simplicity, we will start with the case of only one kind of
particle in the channel and assume that charge conserva-
tion is fulfilled. As has already been mentioned, relativistic
quantum field effects will be disregarded, namely, the clus-
ter’s size is assumed to be significantly larger than the
Compton wavelength of the particle. The correspondence
between Fock space and multiparticle tensor space requires
the identification

|{Nj}kV 〉 → (23)∑
p

χ(p)b 1√
N !n1! . . . nM !

|kp(1)τp(1), . . . ,kp(N)τp(N)〉,

where p is a permutation of the integers 1, . . . , N and χ(p)
its parity; the ni are the number of times a given vector ki

recurs in the state with
∑M

i=1 ni = N ; b = 0 for bosons and
b = 1 for fermions. As there is only one particle species,
the phase space volume Ω{Nj} can be denoted with ΩN

and can be calculated by using (16). Replacing |{Nj}k′〉
with

|{Nj}k〉 →
∑

p

χ(p)b

√
N !

|pp(1)σp(1), . . . ,pp(N)σp(N)〉 (24)

similarly to (23), and dividing by 1/N ! in order to avoid
multiple counting of (anti-) symmetric basis tensors when
integrating over all possible momenta, we find

ΩN =
ΓN

|ηi|2

=

[
N∏

i=1

∑
σi

∫
d3pi

]
δ4(P − Pf )

×
∑
kV

∣∣∣∑
p

χ(p)b 1√
N !n1! . . . nM !

×〈p1σ1, . . . |kp(1)τp(1), . . .〉
∣∣∣2. (25)

In (25) and hereafter Pf must be understood as the sum of
the four-momenta of all particles in the channel. The last
factor in the above equation can be worked out as follows:

∑
kV

∣∣∣∑
p

χ(p)b 1√
N !n1! . . . nM !

〈p1σ1, . . . |kp(1)τp(1), . . .〉
∣∣∣2

=
∑
kV

1
N !n1! . . . nM !

∑
p,q

χ(p)bχ(q)b (26)

× 〈p1σ1, . . . |kp(1)τp(1), . . .〉〈kq(1)τq(1), . . . |p1σ1, . . .〉

=
1
N !2

∑
p,q

χ(pq)b
N∏

i=1

∑
kiτi

〈pp(i)σp(i)|kiτi〉〈kiτi|pq(i)σq(i)〉,

where, in the last equality, we have redefined the dummy
permutation indices p, q as their inverse and multiplied each
term by a factor n1! . . . nM !/N ! in order to avoid multiple
counting of the symmetric (antisymmetric) basis tensors
|hV 〉 when the sum over all possible vectors k and polar-
izations τ is carried out. Finally, taking into account that
also ki and τi are dummy indices, one sum over permu-
tations can be trivially performed and we are left with
the transformation∑

k

∑
kV

|〈{Nj}k|{Nj}kV 〉|2 → (27)

1
N !

∑
r

χ(r)b

[
N∏

i=1

∫
d3pi

]∑
kiτi

〈piσi|kiτi〉〈kiτi|pr(i)σr(i)〉,

with r = p−1q and χ(r) = χ(p−1q) = χ(p−1)χ(q) =
χ(p)χ(q). The inner sums in the above equality yield (see
Appendix C) ∑

kiτi

〈piσi|kiτi〉〈kiτi|pr(i)σr(i)〉

=
δσi
σr(i)

(2π)3

∫
V

d3x eix·(pr(i)−pi), (28)

so the following expression of the phase space volume ΩN

for N identical particles is obtained:

ΩN =
∑

r

χ(r)b

N !

∑
σ1,...,σN

∫
d3p1 . . .d3pN δ4(P − Pf )

×
N∏

i=1

δσi
σr(i)

1
(2π)3

∫
V

d3x eix·(pr(i)−pi). (29)

Hence, the phase space volume of N identical particles is
given by the sum ofN ! terms and it is thus enhanced or sup-
pressed with respect to the case of distinguishable particles.
As will be proved in the following, this effect is owing to the
finite volume and, thereby, this model naturally accounts
for Bose–Einstein and Fermi–Dirac correlations.

To develop (29), it is useful to recall that any permu-
tation r of N integers can be uniquely decomposed into
the product of cyclic permutations, that is r = c1 . . . cH .
Let n be the number of integers in each cyclic permutation
and let hn be the number of cyclic permutations with n
elements in r so that

∑∞
n=1 nhn = N . The set of integers

h1, . . . , hN ≡ {hn}, with
∑∞

n=1 hn ≡ H, is usually defined
as a partition and different permutations having the same
structure of cyclic decomposition, that is, the same number
of integers for each cl (i.e. the same partition), belong to
the same conjugacy class of the permutation group SN .
The crucial observation is that each term in (29) is invari-
ant over a conjugacy class, or, in other words, depends
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only on the partition {hn}; this happens because different
permutations in the same conjugacy class differ only by
a redefinition of the integers 1, . . . , N and this is just a
change of the name of the dummy integration variables
and sum indices in (29). The number of permutations of
SN belonging to a given conjugacy class is a well known
number [17], namely N !/

∏N
n=1 n

hnhn!. Furthermore, for
the representative cyclic permutation c with n elements
(1, . . . , n): ∑

σ1,...,σn

n∏
i=1

δσi
σc(i)

= (2J + 1), (30)

so that

∑
σ1,...,σN

N∏
i=1

δσi
σr(i)

=
H∏

l=1

∑
σ1,...,σnl

nl∏
il=1

δ
σil
σcl(il)

= (2J + 1)H ,

(31)
where r = c1 . . . cH and nl is the number of integers in the
cyclic permutation cl. By defining

Fnl
=

nl∏
il=1

1
(2π)3

∫
V

d3x eix·(pcl(il)
−pil

), (32)

and taking into account that χ(cl) = (−1)nl+1, we can
finally rewrite (29) as

ΩN =
∑
{hn}

ΩN ({hn})

=
∑
{hn}

(∓1)N+H(2J + 1)H∏N
n=1 n

hnhn!

[
N∏

i=1

∫
d3pi

]

×δ4(P − Pf )
H∏

l=1

Fnl
, (33)

where the upper sign applies to fermions, the lower to
bosons. Therefore, the phase space volume for a channel
with N identical particles consists of a large number of
terms ΩN ({hn}), each corresponding to a partition {hn},
which is usually called in statistical mechanics a cluster
decomposition3.

In the large volume limit, the dominant term is the one
with the highest power of V and this corresponds to the
partition (h1, h2, . . . , hN ) = (N, 0, . . . , 0), i.e. the identical
permutation. In this case there areN factors F1 = V/(2π)3
and the whole term reads

ΩN (N, 0, . . . , 0) (34)

=
[
V (2J + 1)

(2π)3

]N 1
N !

∫
d3p1 . . .d3pN δ4(P − Pf ),

which is the phase space volume for a set of N identical
particles in classical Boltzmann statistics; we have indeed
recovered the phase space volume quoted in (19). All other

3 The term cluster in this context has nothing to do with our
previous definition of an individual hadronizing source

terms of the expansion in (33) have a lower power of V . The
next-to-leading term corresponds to the conjugacy class of
permutations with one exchange and N − 2 unchanged
integers, i.e. (h1, h2, h3, . . . , hN ) = (N − 2, 1, 0, . . . , 0) In
the large volume limit it is easily seen, looking at (32), that
F2 → δ3(p2 − p1)V/(2π)3 and the whole term thus reads

ΩN (N − 2, 1, 0, . . . , 0)

=
(∓1)

2(N − 2)!

[
V (2J + 1)

(2π)3

]N−1

×
∫

d3p2 . . .d3pN δ4(P − Pf ), (35)

where Pf = 2p2 + p3 + . . . pN . Introducing the new inte-
gration variables p′ = 2p2 the energy term 2ε2 becomes√

p′2 + (2m)2 and (35) can be rewritten as

ΩN (N − 2, 1, 0, . . . , 0)

=
(∓1)

24(N − 2)!

[
V (2J + 1)

(2π)3

]N−1

(36)

×
∫

d3p′d3p3 . . .d3pN δ4

(
P − p′ −

N∑
i=3

pi

)
.

Aside from the sign and an overall normalization factor
1/16, this term corresponds to the Boltzmann limit (35) of
the phase space volume for a set ofN−2 identical particles
plus a new particle (labelled with a prime) obtained by
clumping particles 1 and 2 into a lump with a mass twice
the mass of 1 and 2 and the same spin.

Actually, this kind of interpretation holds for all of the
terms in (33). In fact, in the large volume limit, each Fn im-
plies the elimination of n−1 integration variables through
the appearance of Dirac deltas, while a single V/(2π)3
factor is left because of the cyclic structure of the permu-
tation, namely

Fnl
→ V

(2π)3

nl−1∏
il=1

δ3(pil
− pil+1). (37)

Then, after trivial integrations are carried out in (33), the
Dirac delta forcing conservation of four-momentum turns
into δ4(Pi − n1p1 − n2pn1+1 . . . − nHpnH−1+1) and new
integrations variables can be introduced:

p′
1 = n1p1 p′

2 = n2pn1+1 . . . p′
H = nHpnH−1+1, (38)

as well as new energies:

ε′ = nlε = nl

√
p2 +m2 =

√
p′2 + (nlm)2. (39)

Therefore, the term corresponding to the partition {hn}
can be written as

ΩN ({hnj }) =
(∓1)N+H∏N

n=1 n
hnhn!

∏H
l=1 n

3
l

[
V (2J + 1)

(2π)3

]H

(40)

×
∫

d3p′
1 . . .d

3p′
H δ4

(
P −

H∑
l=1

p′
l

)
,



250 F. Becattini, L. Ferroni: Statistical hadronization and hadronic microcanonical ensemble I

where particles are now clumped into H lumps with mass
equal to nlm and spin J . Since

∏H
l=1 n

3
l =

∏N
n=1 n

3hn , the
above equation can also be written as

ΩN ({hnj
}) =

(∓1)N+H∏N
n=1 n

4hnhn!

[
V (2J + 1)

(2π)3

]H

(41)

×
∫

d3p′
1 . . .d

3p′
H δ4

(
P −

H∑
l=1

p′
l

)
.

We can thus conclude that the general term relevant to
the cluster decomposition of the phase space volume of a
set of N identical particles can be obtained by calculat-
ing the phase space volume, in Boltzmann statistics, of a
suitable set of lumps having as mass multiple integer val-
ues of m and spin J , weighted by an overall coefficient of
(∓1)N−H/

∏
n n

4hn . Note that the factors 1/hn! already
take into account the identity of the lumps.

After having inferred the expressions of the phase space
volume of a channel with N identical particles, the gener-
alization to a channel {Nj} (see Sect. 2) with an arbitrary
number of groups of identical particles for each species
j is rather straightforward and can be achieved by go-
ing along the previous arguments. Thereby, the following
equations are obtained which are extensions of (27), (29),
and (33), respectively:

∑
k

∑
kV

|〈{Nj}k|{Nj}kV 〉|2 →
∏
j

1
Nj !

∑
rj∈SNj

χ(rj)bj (42)

×

 Nj∏

ij=1

d3pij


∑
kij

τij

〈pijσij |kijτij 〉〈kijτij |prj(ij)σrj(ij)〉,

Ω{Nj} =
∑

σ1,...,σN

∫
d3p1 . . .d3pN δ4(P − Pf ) (43)

×
∏
j

∑
rj∈SNj

χ(rj)bj

Nj !

Nj∏
ij=1

δ
σij
σrj(ij)

(2π)3

∫
V

d3x eix·(prj(ij)−pij
)

and

Ω{Nj} =
∫

d3p1 . . .d3pN δ4(P − Pf ) (44)

×
∏
j

∑
{hnj

}

(∓1)Nj+Hj (2J + 1)Hj∏Nj

nj=1 n
hnj

j hnj
!

Hj∏
lj=1

Fnlj
,

with Hj =
∑Nj

nj=1 hnj and Nj =
∑Nj

nj=1 njhnj . The above
expression is the most general for the microcanonical phase
space volume of the multihadronic channel {Nj} in the
ideal hadron-resonance gas framework with full quantum
statistics and generalizes the expression obtained in [11]:

Ω{Nj} =


∏

j

∑
{hnj

}
(∓1)Nj+Hj

1∏Nj

nj=1 n
4hnj

j hnj !
(45)

×

 Hj∏

lj=1

V (2Jj + 1)
(2π)3

∫
d3p′

lj




 δ4


Pi −

Hj∑
j,lj=1

p′
lj


 ,

where, for a set of partitions {hn1}, . . . , {hnK
}, the four-

momenta p′
lj

are those of lumps of particles of the same
species j (Hj in number) with mass njmj and spin Jj .
While (44) is indeed the correct expression of the micro-
canonical relativistic phase space volume of the channel
{Nj} in the statistical hadronization model, (45) turns out
to be a special case of (44) and in fact can be derived from it
by replacing Fnl

with their limiting expressions (37). Thus,
the expression (45) is a good approximation of (44) only
in the limit of large volumes. In fact, the derivation of the
relativistic phase space volume in (45) in [11] was based on
the assumption that particle states within the cluster are
energy-momentum eigenstates, which is a good approxi-
mation only for large volumes, as extensively discussed at
the end of the previous section. For the expression (44) to
be valid, we now just need that the linear size of the cluster
must be sufficiently larger than the Compton wavelength
of the involved particles in order to neglect relativistic
quantum field effects.

The fact that the leading Boltzmann terms in the gen-
eral expression (44) and the approximate one (45) are the
same, as already pointed out in Sect. 2, reduces the ac-
tual numerical impact of this generalization on many, yet
not all, observables. For instance, at the actual tempera-
ture values of about 160 MeV found in previous analyses of
many high energy collisions in the canonical ensemble [1,7],
quantum statistics corrections on average particle multi-
plicities turned out to be significant for pions only (about
10%), whilst they can be neglected for all other hadrons.
Therefore, as long as average multiplicities are concerned,
the calculation can be done within Boltzmann statistics
and the difference between the correct formula and the
approximate one is almost irrelevant. Thus, the only effec-
tive requirement on the cluster size for the validity of all
performed analyses in high energy collisions [1, 7] is that
it must be larger than the Compton wavelength of the
particles (at most 1.4 fm) and this is always met.

Even though average multiplicities are essentially un-
affected in most practical cases, there are other observ-
ables which are sensitive to quantum statistics effects and
for which the fully correct calculation of the phase space
volume (45) is compelling, e.g. Bose–Einstein correlation
spectra and multi-pion exclusive channel rates.

4 Microcanonical partition function

The overall phase space volume of the ideal hadron-res-
onance gas is obtained by summing Ω{Nj} over all al-
lowed channels:

Ω =
∑
{Nj}

Ω{Nj}δQ,Q{Nj} . (46)

As Ω{Nj} = Γ{Nj}/|ηi|2, Ω can be expressed on the basis
of (11) after having removed the two identity resolutions
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in f ′ and f ′′:

Ω =
1

|ηi|2
∑

f

Γf

=
∑

f

∑
hV ,h′

V

〈f |hV 〉〈hV |δ4(P − Pop) δQ,Qop |h′
V 〉〈h′

V |f〉

=
∑
hV

〈hV |δ4(P − Pop) δQ,Qop |hV 〉. (47)

The last expression makes it apparent that the definition of
Ω as themicrocanonical partition function is an appropriate
one. If the sums in (46) and (47) are performed over all
channels regardless of their charge, the obtained quantity
is defined as a grand-microcanonical partition function:

Ω =
∑
{Nj}

Ω{Nj} =
∑
hV

〈hV |δ4(P − Pop)|hV 〉. (48)

Throughout this section we will confine ourselves to the
latter, rather than to the properly defined microcanonical
partition function, in order not to bring along a cumbersome
formalism. This limitation shall not affect the generality of
the expounded arguments, and the extension to the case
of constrained charges is indeed straightforward.

Wehave seen in theprevious section that (44) is a correct
generalization of (45) for finite volumes. Likewise, (48) is
a generalization of the expression quoted in the previous
literature [7, 11]:

Ω =
∑

states

δ4(P − Pstate). (49)

In fact, (49) is a straightforward consequence of (48) if
|hV 〉 is an eigenstate of energy-momentum. However, we
have already emphasized that |hV 〉 is a localized state and
its four-momentum is a well defined quantity only in the
large volume limit, as has been discussed at the end of
Sect. 2. Thus, (49) is consistent only if the cluster is suffi-
ciently large, whereas (48) is always well defined. On the
other hand, a closed analytical integral expression for the
correct (grand-) microcanonical partition function cannot
be written. The best one can do is to decompose it as a
sum over channels, as in (46), and calculate numerically
the Ω{Nj}’s according to (44), which is a formidable task
indeed. Conversely, (49) does lead to a closed integral ex-
pression, which can be obtained by firstly expanding the
Dirac delta in (49) as a Fourier integral:

δ4(P − Pstate) =
1

(2π)4

∫
d4y ei(P−Pstate)· y, (50)

and reexpressing (49) as

Ω =
1

(2π)4

∫
d4y eiP ·y ∑

{njh}

∏
j,h

e−injhpjh· y. (51)

The sum over states is in fact a sum over all possible occupa-
tion numbers of each phase space cell. The calculation now

proceedsby taking advantage of the commutability between
sum and product in (51). However, unlike for fermions for
which njh = 0, 1 only, the sum over occupation numbers
does not converge to a finite value for bosons as njh runs
from 0 to ∞. The convergence is recovered if the time com-
ponent of y is provided with a small negative imaginary
part −iε. If we introduce such a term in (51) the sums can
be performed, and the result is

Ω = lim
ε→0

1
(2π)4

∫ +∞−iε

−∞−iε
dy0

∫
d3y eiP ·y

× exp


∑

j,h

log(1 ± e−ipjh·y)±1


 , (52)

where the upper sign applies to fermions, the lower to
bosons. The integrand function is in fact singular for y = 0
and the shift of the integration contour in the complex
plane provides a regularization prescription. The sum over
phase space cells can be replaced, in the large volume limit,
by an integration according to (22), so that Ω reads

Ω = lim
ε→0

1
(2π)4

∫ +∞−iε

−∞−iε
dy0

∫
d3y eiP ·y (53)

× exp


∑

j

(2Jj + 1)V
(2π)3

∫
d3p log(1 ± e−ip·y)±1


 .

We will prove in the remainder of this section that the
closed expression for the grand-microcanonical partition
function, (53), can be recovered without invoking (49)
and (22), but starting from the general expression (44)
in at least two cases:
(1) for Boltzmann statistics;
(2) in a full quantum statistics treatment, by enforcing the
approximation (37), namely

1
(2π)3

∫
V

d3x ei(p−p′)·x � δ3(p − p′). (54)

Henceforth, we will adopt the following shorthand:

∫ +∞−iε

−∞−iε
d4y =

∫ +∞−iε

−∞−iε
dy0

∫
d3y. (55)

(1) Let us start by showing our case for Boltzmann statis-
tics. We have seen in the previous section that confining
ourselves to classical statistics amounts to retaining only
the first term {hnj

} = (Nj , 0, . . . , 0) in the general cluster
decomposition (44), hence h1 = Hj = Nj , F1 = V/(2π)3
and

ΩBoltz
{Nj} =

∫
d3p1 . . .d3pN δ4

(
P −

N∑
i=1

pi

)

×
∏
j

1
Nj !

[
V (2J + 1)

(2π)3

]Nj

. (56)
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The Dirac delta in the above equation can be Fourier ex-
panded; thus, after regularization

ΩBoltz
{Nj} =

1
(2π)4

∫ +∞−iε

−∞−iε
d4y eiP ·y

∫
d3p1 . . .d3pN (57)

× exp

[
−i

N∑
i=1

pi · y
]∏

j

1
Nj !

[
V (2J + 1)

(2π)3

]Nj

=
1

(2π)4

∫ +∞−iε

−∞−iε
d4y eiP ·y

×
∏
j

1
Nj !

[
V (2J + 1)

(2π)3

∫
d3p e−ipj ·y

]Nj

.

Summing over all channels yields the grand-microcanonical
partition function:

ΩBoltz =
1

(2π)4

∫ +∞−iε

−∞−iε
d4y eiP ·y

× exp


∑

j

V (2Jj + 1)
(2π)3

∫
d3p e−ipj ·y


 , (58)

which can be obtained indeed from (53) with the boltz-
mannian approximation:

log(1 ± e−ip·y)±1 � e−ip· y. (59)

This proves the first part of our argument.
(2) If quantum statistics is included, we make the sup-
plementary assumption, as has been mentioned, that the
approximations (37) apply and, thus, (44) turns to (45).
Let us first restore plj = p′

lj
/nlj [see (38)] as integration

variables and rewrite (45) by plugging in the Fourier ex-
pansion of the Dirac delta:

Ω{Nj} =


∏

j

∑
{hnj

}
(∓1)Nj+Hj

1∏Nj

nj=1 n
hnj

j hnj !

×
Hj∏

lj=1

[
V (2Jj + 1)

(2π)3

∫
d3plj

] δ4

Pi −

∑
j

Hj∑
lj=1

nljplj




=
1

(2π)4

∫ +∞−iε

−∞−iε
d4y eiP ·y


∏

j

∑
{hnj

}

(∓1)Nj+Hj∏Nj

nj=1 n
hnj

j hnj !

×
Hj∏

lj=1

[
V (2Jj + 1)

(2π)3

∫
d3plj

] exp


−i

∑
j

Hj∑
lj=1

nljplj · y



=
1

(2π)4

∫ +∞−iε

−∞−iε
d4y eiP ·y∏

j

∑
{hnj

}

(∓1)Nj+Hj∏Nj

nj=1 n
hnj

j hnj !

×
Hj∏

lj=1

[
V (2Jj + 1)

(2π)3

∫
d3plj e

−inlj
plj

·y
]
. (60)

In order to simplify the notation, we introduce the quan-
tities

zj(n) ≡ zj(n)(y) =
V (2Jj + 1)

(2π)3

∫
d3p e−inp· y, (61)

so that (60) can be further written as

Ω{Nj} =
1

(2π)4

∫ +∞−iε

−∞−iε
d4y eiP ·y

×
∏
j

∑
{hnj

}
(∓1)Nj+Hj

∏Hj

lj=1 zj(nlj
)∏Nj

nj=1 n
hnj hnj !

(62)

=
1

(2π)4

∫ +∞−iε

−∞−iε
d4y eiP ·y∏

j

∑
{hnj

}

∞∏
nj=1

(∓1)(nj+1)hnj z
hnj

j(nj)

n
hnj

j hnj
!

,

where, in the last passage, we have taken advantage of the
fact that zj(n) is constant over a conjugacy class. Also note
that we have released the upper limit in the sum because
of the constraint

∑
nj
njhnj = Nj which effectively sets

it to Nj . At this stage, the key observation is that we
can implement this constraint through an integration in
the complex plane for each species j and then perform an
unconstrained sum over all hnj :

∑
{hnj

}
=
∑

h1,...,h∞

δΣnj
njhnj

,Nj =
1

2πi

∮
dw

wNj+1

∞∏
nj=1

∞∑
hnj

=0

wnjhnj ,

(63)
so that the part of integrand in (62) following the j-product
sign can be written as

1
2πi

∮
dwj

w
Nj+1
j

∞∏
nj=1

∞∑
hnj

=0

(∓1)(nj+1)hnj z
hnj

j(nj)
wnjhnj

n
hnj

j hnj
!

=
1

2πi

∮
dwj

w
Nj+1
j

∞∏
nj=1

exp
[
(∓1)nj+1

nj
zj(nj)w

nj

j

]

=
1
Nj !

dNj

dwNj

j

exp


 ∞∑

nj=1

(∓1)nj+1

nj
zj(nj)w

nj

j



∣∣∣∣∣∣
wj=0

.(64)

By using the explicit expression of z(n) in (61), the series
in the exponential of (64) can be summed, and this yields,
for the phase space volume Ω{Nj},

Ω{Nj} =
1

(2π)4

∫ +∞−iε

−∞−iε
d4y eiP ·y

×
∏
j

1
Nj !

dNj

dwNj

j

exp
[
(2Jj + 1)V

(2π)3

∫
d3p

× log(1 ± wje−ip·y)±1]∣∣
wj=0 . (65)

We are now in a position to calculate Ω by summing over
all Nj ∀j, according to (48). The sum over each Nj =
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0, . . . ,∞ can be performed independently and, noticing
that each term is the Njth one of the Taylor expansion of
the exponential function evaluated at wj = 1, one obtains

Ω =
1

(2π)4

∫ +∞−iε

−∞−iε
d4y eiP ·y (66)

×
∏
j

exp
[
(2Jj + 1)V

(2π)3

∫
d3p log(1 ± e−ip·y)±1

]
,

which coincideswith (53); this proves our second statement.
The recovery of the known expression of the micro-

canonical partition function in the two considered cases
is not surprising as the same holds for the single channel
phase space volume Ω{Nj}. We have seen this in Sect. 2
where it has been emphasized that Ω{Nj} in Boltzmann
statistics does not differ from its approximation in the large
volume limit; and in Sect. 3, where we have seen that the
Ω{Nj} in full quantum statistics (45), deduced from (44)
by enforcing the approximation (37), was obtained in the
traditional approach [11] using (20), (21) and (22).

5 From microcanonical to canonical ensemble

What has been done for the grand-microcanonical ensemble
can be straightforwardly extended to the properly called
microcanonical ensemble by adding the further constraint
of M abelian charges conservation, like in (46). The Kro-
necker delta can be Fourier expanded :

δQ,Q{Nj} =
M∏

m=1

1
2π

∫ π

−π

dφm ei(Qm−Q{Nj}m)φm

=
1

(2π)M

∫ +π

−π

dMφ ei(Q−Q{Nj})·φ, (67)

where the vector notation φ = (φ1, . . . , φM ) has been in-
troduced. The reasoning in the previous section, from (56)
onwards, can easily be repeated with the additional charge
constraint (67), under the same conditions for the valid-
ity of the needed approximation (54). One can thus arrive
at the following expression of the microcanonical parti-
tion function:

Ω =
1

(2π)4+M

∫
d4y eiP ·y

∫ +π

−π

dMφ eiQ·φ (68)

× exp


∑

j

(2Jj + 1)V
(2π)3

∫
d3p log(1 ± e−ip·y−iqj ·φ)±1


 ,

where qj = (qj1, . . . , qjM ) are the abelian charges of the
jth hadron species. Let us perform a rotation in the four-
dimensional complex hyperplane by setting z = iy and
rewrite (68) as

Ω = lim
ε→0

1
(2πi)4

∫ +∞−iε

−∞−iε
d4z exp[P ·z+logZ(z,Q)], (69)

where

Z(z,Q) =
1

(2π)M

∫ +π

−π

dMφ eiQ·φ (70)

× exp


∑

j

(2Jj + 1)V
(2π)3

∫
d3p log(1 ± e−z·p−iqj ·φ)±1


 .

In (70) the expression of the canonical partition func-
tion [1, 7] calculated for a complex four-temperature z is
recognizable . The same expression can be obtained starting
from the definition

Z(z,Q) =
∑
hV

〈hV |e−z·PopδQ,Qop |hV 〉, (71)

and proceeding in the very same way as for the micro-
canonical partition function. Particularly, the approxima-
tions (54) are needed to get to (70).

If the volume and the mass of the cluster are large,
one can make an approximate calculation of the integral
in (69) through the saddle-point expansion. The large-
valued parameter can be either the volume or the mass
provided that the density M/V is a finite value, which is
indeed the case of interest in the framework of the statistical
hadronization model. The saddle-point four-vector β is
determined by enforcing the vanishing of the integrand
logarithmic derivative for each component µ:

∂

∂zµ
[P · z + logZ(z,Q)]

∣∣∣
z=β

= Pµ +
∂

∂βµ
logZ(β,Q) = 0. (72)

We assume that the above equation has one real solution
(note that Z(z) is real for a real argument, see (71))). This
must be a timelike four-vector for integration in (70) to
converge.Therefore,we can setβ = (1/T )ûwhere û is a unit
timelike vector and T > 0 is defined as a temperature, while
β is usually called the temperature four-vector. It is not
difficult to verify that if the cluster’s rest frame is chosen,
where P = (M,0), β has vanishing spatial components
and the usual expression of the canonical partition function
is recovered:

Z(Q) =
∑
hV

〈hV |e−Hop/T δQ,Qop |hV 〉, (73)

where Hop is the hamiltonian. Retaining only the lead-
ing term of the asymptotic expansion, the microcanonical
partition function can be approximated as

Ω � exp[P · β + logZ(β,Q)]

√
1

(2π)4 det H(β,Q)
, (74)

where H is the Hessian matrix ∂2 logZ/∂zµ∂zν . In the
cluster’s rest frame β = (β̄,0) as already pointed out;
thus, according to (70), the derivative ∂ logZ/∂zi with
respect to the spatial components of z vanishes because
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of the odd-symmetric momentum integrands and, conse-
quently, the Hessian determinant in (74) simply becomes
∂2 logZ/∂β̄2 = CV T

2. Altogether, if V is large, the mi-
crocanonical partition function Ω is proportional to the
canonical partition function Z and we can write

Ω(P,Q)
V →∞∝ eβ·PZ(β,Q), (75)

with β given by (72), and

Z(β,Q) =
∫

d4P θ(P 0) e−β·PΩ(P,Q). (76)

This equation is indeed an exact one, as can be realized
from (68); the canonical partition function is in fact the
Laplace transform of the microcanonical one.

The question ariseswhether and inwhich range of values
of the cluster’s volume and mass the approximation (75),
i.e. the use of the canonical ensemble, employed in several
analyses of multiplicities in elementary collisions, is a good
one for the calculation of relevant physical quantities. This
issue can be tackled only numerically for the particular
system of the ideal hadron-resonance gas, comparing the
exact one with the approximate calculation; as has been
mentioned in the Introduction, this will be the main subject
of the second paper [12].

The way temperature has been introduced starting from
the microcanonical ensemble in (72) is rather unusual and
deserves some discussion. Through the saddle-point rela-
tion (72), we have defined a temperature by enforcing the
known values of energy and momentum of the cluster to be
such that they can easily be recognized as the average en-
ergy and momentum in the canonical ensemble, that is, in
the cluster’s rest frame where P = (M,0) and β = (β̄,0):

M = − ∂

∂β̄
logZ(β̄,Q), (77)

with T = 1/β̄. On the other hand, it is also possible [18]
to extend the relation

1
T

≡ ∂S

∂M
with S = log Ω (78)

to the microcanonical regime. This definition gives rise to
the following equation, by using (69):

1
T

=
1
Ω

lim
ε→0

1
(2πi)4

∫ +∞−iε

−∞−iε
d4z z0eMz0

Z(z,Q), (79)

which implies a different definition of temperature with
respect to (77). At the leading order of the asymptotic
expansion of the above integral and Ω, the previous equa-
tion reads

1
T

�
β̄′ exp

[
M + ∂

∂β̄′ logZ(β̄′,Q)
]
(CV (β̄)β̄2)−1/2

exp
[
M + ∂

∂β̄
logZ(β̄,Q)

]
(CV (β̄′)β̄′2)−1/2

,

(80)
where β̄ is the solution of (77) and β̄′ the one of

1
β̄′ +M = − ∂

∂β̄′ logZ(β̄′,Q). (81)

If the system is very large, i.e. in the thermodynamical limit,
the temperature 1/β̄′ is much less than M so, according
to (81) β̄′ � β̄, 1/T � β̄′ � β̄ and the two definitions
coincide, as expected.

It is worth pointing out that, even in the canonical
ensemble, for finite volumes, logZ is not a linear function
ofV (see (70)) and this has the remarkable consequence that
T , in both definitions, is not a function of M/V but of M
and V separately. Otherwise stated, if T and V are used
as independent thermodynamical parameters, the mean
energy is not an extensive variable as it does not scale
linearly with V . Of course, this mostly unfamiliar feature
disappears in the thermodynamic limit.

6 Physical observables

The comparison of themodel predictionswith experimental
measurements involves the calculation of quantities which
can always be written as averages or expectation values of
some operator. For instance, the average multiplicity of the
jth hadron species in the grand-microcanonical ensemble
can be written as

〈N̂j〉 =

∑
{Nj}NjΩ{Nj}

Ω
, (82)

the correlations between jth and kth hadron species as the
expectation value of (N̂j −〈Nj〉)(N̂k−〈Nj〉) and the proba-
bility of a single configuration {Nj} as the expectation value
of δN̂1,N1

, . . . , δN̂K ,NK
. The analytical expressions of sums

like that in (82) can be obtained by multiplyingΩ{Nj} by a
factor (a fictitious fugacity) λj to the power Nj and taking
the derivative with respect to λj for λj = 1. Therefore, for
the average multiplicity of the jth hadron species:

〈N̂j〉 =

∑
{Nj}NjΩ{Nj}

Ω

=
∂

∂λj
log

∑
{Nj}

λ
Nj

j Ω{Nj}

∣∣∣∣∣∣
λj=1

. (83)

The sum on the right hand side can be generalized to
all species:

G(λ1, . . . , λK) =
∑
{Nj}

Ω{Nj}
∏
j

λ
Nj

j , (84)

and G can be properly defined as the generating function
of the multiparticle multiplicity distribution. Note that
G(1) = Ω.

The main advantage of this method of expressing ex-
pectation values is that the generating function can be
calculated analytically. By using the expression of Ω{Nj}
in (65), the right hand side of (84) can be turned into

G(λ1, . . . , λK) =
1

(2π)4

∫ +∞−iε

−∞−iε
d4y eiP ·y (85)
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× exp


∑

j

(2Jj + 1)V
(2π)3

∫
d3p log(1 ± λje−ip·y)±1




and similarly in the canonical case. Now the expectation
value of any operator can be calculated from the generating
function by applying many times the differential operators
Dj = λj∂/∂λj . In fact, according to (84), for the Mth
power of Nj :

〈N̂M
j 〉 =

1
Ω

[
M∏
i=1

λj
∂

∂λj

]
G(λ1, . . . , λK)

∣∣∣∣∣
λ=1

. (86)

Then, since the operators Dj and Dk commute, we can
write formally, for any function of N1, . . . , NK :

〈F ( ˆ{Nj})〉 =
1
Ω
F (D1, . . . , DK)G(λ1, . . . , λK)

∣∣∣
λ=1

.

(87)

Thereby analytical expressions of various observables can
be inferred. For instance, by using (86)withG given by (85),
the averagemultiplicity of the jth hadron, in theBoltzmann
statistics limit, turns out to be

〈N̂j〉 =
1

Ω(P )
(2Jj + 1)V

(2π)3

∫
d3p Ω(P − pj), (88)

where Ω(P ) is given by (53). It is worth remarking that,
sinceΩ(P−pj) vanisheswhen (P−pj)2 < 0, the integration
in momentum is cut off when, in the cluster’s rest frame,
the energy of the particle exceeds the cluster’s mass, as it
should naturally occur in a microcanonical framework.

Despite their simple appearance, expressions like (88)
are extremely hard to calculate analytically. In fact, the
whole issue of providing closed formulae of multiplicities,
correlations etc. reduces to the calculation of the generating
function in (85). However, an explicit solution of that four-
dimensional integral is known only in the two limiting cases
of ultrarelativistic (vanishing masses) and non-relativistic
gas [19]. For the relativistic gas with massive particles,
which pertains to the hadronic system, no closed formula
useful for numerical evaluation has ever been obtained,
not even as a series. Therefore, the only practicable way of
calculating averages within the microcanonical ensemble is
to evaluateΩ{Nj} integral expressions like (45) (which is in
turn made up of integral terms like (56)) and sum over all
possible channels. However, also those integrals have been
solved analytically only in the aforementioned two limiting
cases, because the functions to be dealt with are essentially
the same. Several authors have tried approximations [20]
but inmost cases it is difficult to keep the error under control
so that, at some fixed order truncation of the expansions,
the relative accuracymayvary fromsomepercent to a factor
of 10 [21]. Thus, the problem of exploring the hadronic
microcanonical ensemble can be attacked only numerically
through Monte-Carlo integration. This has been done by
Werner and Aichelin in a quite recent paper with a method
based on the Metropolis algorithm [5]. In the next paper,

we will present a full numerical calculation for the ideal
hadron-resonance gas which exploits a modification of that
method, very effective for large clusters, taking advantage
of the grand-canonical limit of themultiplicity distributions
as proposal matrix in the Metropolis algorithm.

7 Summary and outlook

This paper is the first of a series of two devoted to the
study of the microcanonical ensemble of the hadron gas,
which is the most fundamental framework for the statis-
tical hadronization model. In this work we have mainly
developed the analytical formalism, while numerical cal-
culations will be the main subject of the second paper. The
main achievements can be summarized as follows.
(1) We have provided a consistent formulation of the statis-
tical hadronization model starting from purposely defined
quantum transition probabilities. This formulation is much
easier to handle than previous ones based on time-reversal
arguments and S-matrix elements averaging and allows one
to calculate any final-state observables more straightfor-
wardly. Furthermore, it is easier to extend it to the case
of angular momentum and parity conservation, whenever
needed. We think that this formulation clarifies once more
that it is possible to account for the observed statistical
equilibrium of the final-state hadronic multiplicities as a
result of prehadronic cluster decays, without invoking a
thermalization process driven by collisions between formed
hadrons.
(2) We have worked out the rates of exclusive channels ne-
glecting angular momentum, parity, isospin and C-parity
conservation (which are important only for very small
hadronizing systems) and recovered known expressions in
the statistical model. We have obtained an expression of the
phase space volume in full quantum statistics as a cluster
decomposition, (44), generalizing previous ones [11] which
are valid only asymptotically, i.e. in the limit of a very large
cluster (in practice with a linear size roughly larger than
3–10 fm). This expression is valid provided that relativis-
tic quantum field effects are neglected, i.e. the hadroniz-
ing cluster should be sufficiently larger than the Compton
wavelengths of the hadrons.
(3) We have shown analytically how the canonical ensemble
can be obtained as an approximation of the microcanonical
ensemble for large volumes and mass of the cluster.

In the second forthcoming paper [12], the numerical
integration of the microcanonical expressions obtained in
this paper will be carried out by means of a Monte-Carlo
method. This will enable a detailed comparison with the
canonical ensemble and to establish the range of validity of
the latter, which has been used in the actual comparisons
with measured hadronic multiplicities [1, 7]. Besides, the
implementation of a reasonably fast and reliable Monte-
Carlo algorithm for the microcanonical hadronization of
single clusters in high energy collisions is a decisive step
for further tests of the statistical hadronization model.
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Appendices

A Symmetries of operator W

We briefly discuss the requirements on the operator W
in (4) for the fulfillment of the known strong-interactions
symmetries. If U(g) is the unitary representation onto a
Hilbert space of an element g belonging to a symmetry
group, then we can write

U(g)WU(g)−1 = W. (A.1)

Thus, as η̂ depends, by definition, only on Casimir opera-
tors, we have

U(g)PV U(g)−1 = PV ,∑
hV

|U(g)hV 〉〈U(g)hV | =
∑
hV

|hV 〉〈hV |. (A.2)

SinceU(g) is a one-to-one correspondence, the requirement
is met if, for any g, every |U(g)hV 〉 is a multihadronic state
of the cluster, i.e. a |h′

V 〉 or a linear combination of them.
This is obvious if |hV 〉 are eigenvectors of U(g), which is the
case for the U(1) groups associated with abelian additive
charges, and quite straightforward for isospin SU(2) since
PV is the projector identity as far as the isospin degrees of
freedom are concerned; also charge conjugation symmetry
is trivially satisfied.

The situation is rather different for space-time symme-
tries. In this case, the translation, rotation and reflection
operators transform the projector PV in the projector onto
the translated, rotated or reflected cluster respectively; only
if this object is the same as the starting one, symmetry
is fulfilled. Therefore, angular momentum and parity are
conserved only if the cluster is spherical in shape, while
energy and momentum are not conserved because of the
finite volume.

B Decomposition of the Poincaré
group projector

The general transformation of the extended Poincaré group
gz may be factorized as

gz = T(x)ZΛ = T(x)ZLn̂(ξ)R, (B.1)

where T(x) is a translation by the four-vector x, Z = I,Π is
either the identity or the space inversion and Λ = Ln̂(ξ)R
is a general orthochronous Lorentz transformation written
as the product of a boost of a hyperbolic angle ξ along the
spacelike axis n̂ and a rotation R depending on three Euler
angles. Thus (7) becomes

PP,J,λ,π

=
1
2

∑
Z=I,Π

dim ν

(2π)4

∫
d4x

∫
dΛ Dν(T(x)ZΛ)i∗

i

×U(T(x)ZΛ)

=
1
2

∑
Z=I,Π

dim ν

(2π)4

∫
d4x

∫
dΛ eiP ·xπzDν(Λ)i∗

i

×U(T(x))U(Z)U(Λ), (B.2)

where z = 0 if Z = I and z = 1 if Z = Π. In the above
equation, by dΛ we meant the invariant normalized measure
of the Lorentz group, which can be written as [22]

dΛ = dLn(ξ) dR = sinh2 ξdξ
dΩn̂

4π
dR, (B.3)

dR being the well known invariant measure of the SU(2)
group.

If the initial state |i〉 has a vanishing momentum, i.e.
P = (M,0), then the Lorentz transformation Λ must not
involve any non-trivial boost transformation with ξ 	= 0
for the matrix element Dν(Λ)i∗

i not to vanish. Therefore Λ
reduces to the rotation R and we can write

PP,J,λ,π =
1
2

∑
Z=I,Π

1
(2π)4

∫
d4x (2J + 1)

∫
dR eiP ·xπz

×DJ(R)λ∗
λ U(T(x))U(Z)U(R). (B.4)

Since [Z,R] = 0, we can move the U(Z) operator to the
right of U(R) and recast the above equation as

PP,J,λ,π =
1

(2π)4

∫
d4x eiP ·xU(T(x)) (B.5)

× (2J + 1)
∫

dR DJ(R)λ∗
λ U(R)

I + πU(Π)
2

,

which is (8).

C Proof of equations (18) and (28)

We shall prove (18) in non-relativistic quantum mechanics.
It is assumed that |k〉 is a complete set of states in a region
A with volume V , with eigenfunctions ψk(r) and that the
transformation from σ to τ polarization states is unitary.
Thus

〈rσ|kτ〉 =
{
ψk(r)Uστ if r ∈ A,

0 if r /∈ A,
(C.1)

where Uστ is the element of a unitary matrix. Hence∑
k,τ

|〈pσ|kτ〉|2 =
∑
k,τ

〈pσ|kτ〉〈kτ |pσ〉

=
∑
k,τ

∫
A

d3r
∫

A

d3r′ 〈pσ|rσ〉〈rσ|kτ〉〈kτ |r′σ〉〈r′σ|pσ〉

=
∑
k,τ

∫
A

d3r
∫

A

d3r′ eip·(r′−r)

(2π)3
ψk(r)ψ∗

k(r′)|Uστ |2, (C.2)
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where we have used the normalization of the states 〈p|p′〉 =
δ3(p−p′). Since the ψk are a complete set of eigenfunctions
in A: ∑

k

ψk(r)ψ∗
k(r′) = δ3(r − r′); (C.3)

thus, taking into account that U is unitary, (C.2) turns into

∑
k,τ

|〈pσ|kτ〉|2 =
1

(2π)3

∫
A

d3r
∫

A

d3r′ δ3(r − r′) =
V

(2π)3
,

(C.4)
Q.E.D.

Likewise, (28) can be proved by calculating∑
k,τ

〈p1σ1|kτ〉〈kτ |p2σ2〉

=
∑
k,τ

∫
A

d3r
∫

A

d3r′

×〈p1σ1|rσ1〉〈rσ1|kτ〉〈kτ |r′σ2〉〈r′σ2|p2σ2〉

=
∑
k,τ

∫
A

d3r
∫

A

d3r′ eip2·r′−ip1·r

(2π)3

×ψk(r)ψ∗
k(r′)Uσ1τU

∗
σ2τ

= δσ1,σ2

1
(2π)3

∫
A

d3r eir·(p2−p1), (C.5)

where (C.3) and unitarity of U have been used.

D Extra strangeness suppression

The use of an extra strangeness suppression parameter γS

is quite common in statistical model analyses in canonical
and grand-canonical ensembles. We show here how this
parameter can be inserted in the microcanonical ensemble
giving rise to the usual formulae in the large volume limit.
All that is needed is to multiply W by an operator which
adds a factor γS for each pair of valence strange quarks
which is created or destroyed in the final state. Thus (3)
becomes

Γf → Γfγ
|NSf −NSi|
S , (D.1)

where NSi the number of strange quarks in the initial
state and NSf =

∑
j Njsj the one in the final state, sj

being the number of valence strange quarks in the jth
hadron species. Then it is quite straightforward to extend
the formulae shown in this paper for the presence of this
additional factor. In particular, if NSi = 0, the rate can
be written

Γf = |ηi|2Ω′
{Nj}, (D.2)

where
Ω′

{Nj} = γ
∑

j Njsj

S Ω{Nj} (D.3)

andΩ{Nj} as quoted throughout thepaper.As far asmesons
with fractional content CS ∈ [0, 1] of 〈ss̄〉 are concerned (η
for instance), an independent incoherent superposition of

the rates is assumed as though the meson was a 〈ss̄〉 state in
a fraction CS of observed reactions. Therefore (D.3) must
be rewritten as

Ω′
{Nj} =

∏
j

f
Nj

j Ω{Nj}, (D.4)

where

fj =
{

1 − CSj + CSjγ
2
S for unflavored mesons.

γ
sj

S otherwise.
(D.5)

These modifications lead to a corresponding modification
of the microcanonical partition function:

Ω′ =
∑
{Nj}

Ω′
{Nj} =

∑
{Nj}

f
Nj

j Ω{Nj}. (D.6)

Under the same condition of the validity of the approxima-
tions, it can be proved, going along the equations quoted
in Sect. 4, that this expression can be calculated explicitly.
The grand-microcanonical partition function reads

Ω =
1

(2π)4

∫ +∞−iε

−∞−iε
d4y eiP ·y (D.7)

× exp


∑

j

(2Jj + 1)V
(2π)3

∫
d3p log(1 ± fje−ip·y)±1


 .

The canonical partition function can be obtained start-
ing from the above microcanonical partition function like
in Sect. 5:

Z(β,Q) =
1

(2π)M

∫ +π

−π

dMφ eiQ·φ (D.8)

× exp
[∑

j
(2Jj+1)V

(2π)3
∫

d3p log(1 ± fje−β·p−iqj ·φ)±1
]
,

which is the same as the one usually employed to derive
the hadron multiplicities [1].
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